

MOS FIELD EFFECT TRANSISTOR

2SJ462

P-CHANNEL MOS FIELD EFFECT TRANSISTOR FOR HIGH SPEED SWITCHING

DESCRIPTION

The 2SJ462 is a switching device which can be driven directly by an IC operating at 3 V.

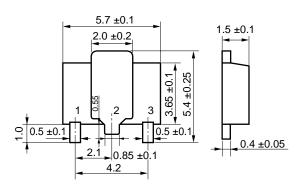
The 2SJ462 features a low on-state resistance and can be driven by a low voltage power source, so it is suitable for applications such as power management.

FEATURES

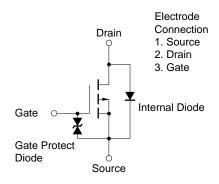
- Can be driven by a 2.5 V power source.
- · New-type compact package.

Has advantages of packages for small signals and for power transistors, and compensates those disadvantages.

· Low on-state resistance.


RDS(ON) : 0.29 Ω MAX. @VGS = -2.5 V, ID = -0.5 A RDS(ON) : 0.19 Ω MAX. @VGS = -4.0 V, ID = -1.0 A

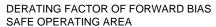
ABSOLUTE MAXIMUM RATINGS ($T_A = +25$ °C)

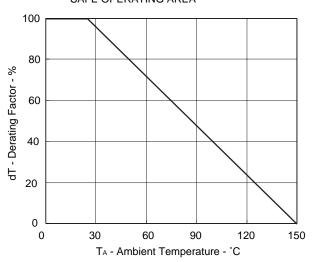

Drain to Source Voltage	VDSS	-12	V
Gate to Source Voltage	Vgss	±8.0	V
Drain Current (DC)	$I_{D(DC)}$	±2.5	Α
Drain Current (pulse)	I _{D(pulse)}	±5.0*	Α
Total Power Dissipation	PT	2.0**	W
Channel Temperature	Tch	150	\mathbb{C}
Storage Temperature	Tstg	-55 to +150	\mathbb{C}

- * PW \leq 10 ms, Duty Cycle \leq 1 %
- ** Mounted on ceramic board of 7.5 cm² × 0.7 mm

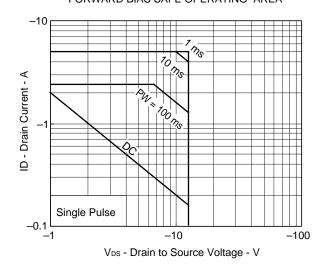
Package Drawings (unit: mm)

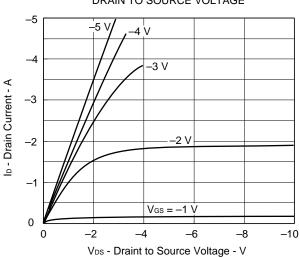
Equivalent Circuit

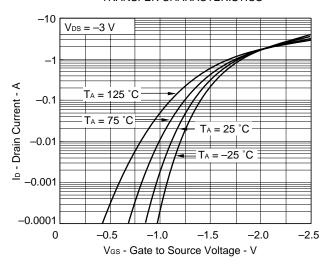

Marking: UA3

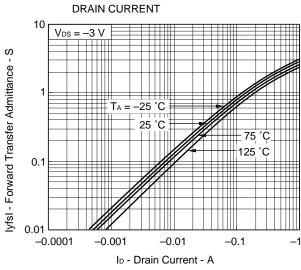


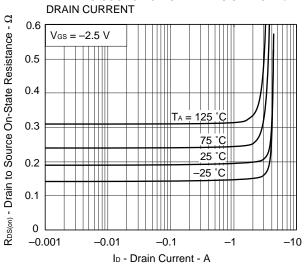
ELECTRICAL SPECIFICATIONS (TA = +25 °C)

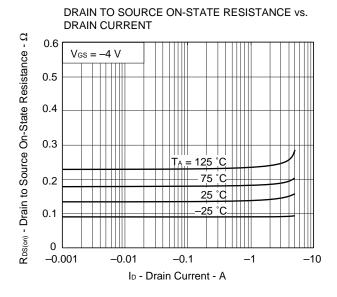

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Conditions	
Drain Cut-off Current	IDSS			-10	μΑ	V _{DS} = -12 V, V _{GS} = 0	
Gate Leakage Current	Igss			±10	μΑ	Vgs = ±8.0 V, Vps = 0	
Gate Cut-off Voltage	V _{GS(off)}	-0.7	-1.0	-1.3	٧	$V_{DS} = -3.0 \text{ V}, I_{D} = -1.0 \text{ mA}$	
Forward Transfer Admittance	yfs	1.5			S	$V_{DS} = -3.0 \text{ V}, I_{D} = -1.0 \text{ A}$	
Drain to Source On-State Resistance	RDS(on)1		195	290	mΩ	Vss = -2.5 V, Ib = -0.5 A	
Drain to Source On-State Resistance	RDS(on)2		135	190	mΩ	Vgs = -4.0, lb = -1.0 A	
Input Capacitance	Ciss		940		pF	V _{DS} = -3.0 V, V _{GS} = 0	
Output Capacitance	Coss		835		pF	f = 1.0 MHz	
Reverse Transfer Capacitance	Crss		495		pF		
Turn-On Delay Time	td(on)		45		ns	$V_{DD} = -3.0 \text{ V, } I_D = -1.0 \text{ A}$ $V_{GS(on)} = -3.0 \text{ V, } R_G = 10 \Omega$ $R_L = 3.0 \Omega$	
Rise Time	tr		225		ns		
Turn-Off Delay Time	td(off)		140		ns		
Fall Time	t _f		195		ns		
Total Gate Charge	Q _G		12		nC	$V_{DS} = -8 \text{ V}, I_{D} = -2.5 \text{ A}$ $V_{GS} = -3.0 \text{ V}, I_{G} = -2 \text{ mA}$	
Gate to Source Charge	Qgs		2		nC		
Gate to Drain Charge	Q _{GD}		7		nC		
Diode Forward Voltage	V _{F(S-D)}		-0.86		V	IF = -2.5 A, VGS = 0	
Reverse Recovery Time	trr		150		ns	$I_F = -2.5 \text{ A, Vgs} = 0$ $di/dt = 50 \text{ A}/\mu\text{s}$	
Reverse Recovery Charge	Qrr		160		nC		

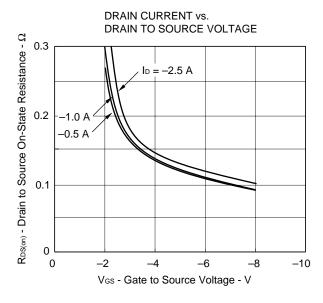


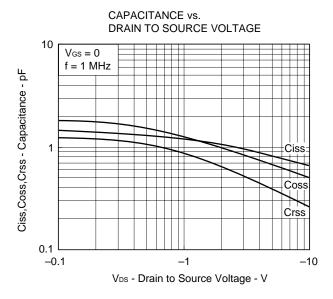

FORWARD BIAS SAFE OPERATING AREA

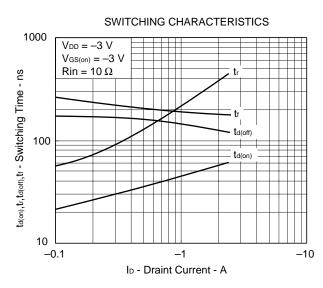

DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE

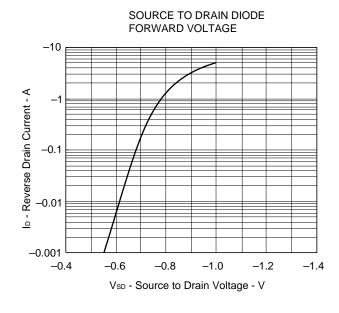

TRANSFER CHARACTERISTICS

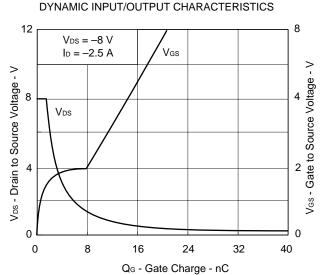

FORWARD TRANSFER ADMITTANCE vs.




DRAIN TO SOURCE ON-STATE RESISTANCE vs.







REFERENCE

Document Name	Document No.
NEC semiconductor device reliability/quality control system	TEI-1202
Quality grade on NEC semiconductor devices	IEI-1209
Semiconductor device mounting technology manual	C10535E
Guide to quality assurance for semiconductor devices	MEI-1202
Semiconductor selection guide	X10679E

5

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11